Showing Results : 1-1 of 1
Sort By :
SLAS Technology

Published By Elsevier

  • SLAS Technology: 2023, vol: , issue:
  • 1)- Tal Murthy, Jamien Lim. Life sciences discovery and technology highlights. SLAS technology. 2023, 28 (6): 381-383
    Cited : 0
    Read More
  • 2)- Nathan Ho, Kaitlyn Tang, Vy Ngo, Isabella Livits, Alayne Morrel, Bari Noor, Kaylee Tseng, Eun Ji Chung. Nanoparticles-based technologies for cholera detection and therapy. SLAS technology. 2023, 28 (6): 384-392
    Cited : 1
    Read More
  • 3)- Krishnaraj Chadaga, Srikanth Prabhu, Vivekananda Bhat, Niranjana Sampathila, Shashikiran Umakanth, Sudhakara Upadya P. COVID-19 diagnosis using clinical markers and multiple explainable artificial intelligence approaches: A case study from Ecuador. SLAS technology. 2023, 28 (6): 393-410
    Cited : 2
    Read More
  • 4)- Catherine S Hansel, Alice Lanne, Hannah Rowlands, Joseph Shaw, Matthew J Collier, Helen Plant. High-throughput differential scanning fluorimetry (DSF) and cellular thermal shift assays (CETSA): Shifting from manual to automated screening. SLAS technology. 2023, 28 (6): 411-415
    Cited : 1
    Read More
  • 5)- Kimerly A Powell, Laura R Bohrer, Nicholas E Stone, Bradley Hittle, Kristin R Anfinson, Viviane Luangphakdy, George Muschler, Robert F Mullins, Edwin M Stone, Budd A Tucker. Automated human induced pluripotent stem cell colony segmentation for use in cell culture automation applications. SLAS technology. 2023, 28 (6): 416-422
    Cited : 0
    Read More
  • 6)- Martin Trossbach, Emma Åkerlund, Krzysztof Langer, Brinton Seashore-Ludlow, Haakan N Joensson. High-throughput cell spheroid production and assembly analysis by microfluidics and deep learning. SLAS technology. 2023, 28 (6): 423-432
    Cited : 2
    Read More
  • 7)- Akira Ohta, Shunsuke Kawai, Yann Pretemer, Megumi Nishio, Sanae Nagata, Hiromitsu Fuse, Yukiko Yamagishi, Junya Toguchida. Automated cell culture system for the production of cell aggregates with growth plate-like structure from induced pluripotent stem cells. SLAS technology. 2023, 28 (6): 433-441
    Cited : 0
    Read More
  • 8)- Claire S Wilson, Bhavya Vashi, Pavol Genzor, Melissa K Gregory, Jason Yau, Lauren Wolfe, Michael J Lochhead, Phil Papst, Kristen Pettrone, Paul W Blair, Subramaniam Krishnan, Josh G Chenoweth, Danielle V Clark. Point-of-care biomarker assay for rapid multiplexed detection of CRP and IP-10. SLAS technology. 2023, 28 (6): 442-448
    Cited : 0
    Read More
  • 9)- George A Van Den Driessche, Devin Bailey, Evan O Anderson, Michael A Tarselli, Len Blackwell. Improving protein therapeutic development through cloud-based data integration. SLAS technology. 2023, 28 (5): 293-301
    Cited : 1
    Read More
  • 10)- Chia-Wei Liu, Hideaki Tsutsui. Sample-to-answer sensing technologies for nucleic acid preparation and detection in the field. SLAS technology. 2023, 28 (5): 302-323
    Cited : 1
    Read More
  • 11)- Rupert Dodkins, John R Delaney, Tess Overton, Frank Scholle, Alba Frias-De-Diego, Elisa Crisci, Nafisa Huq, Ingo Jordan, Jason T Kimata, Teresa Findley, Ilya G Goldberg. A rapid, high-throughput, viral infectivity assay using automated brightfield microscopy with machine learning. SLAS technology. 2023, 28 (5): 324-333
    Cited : 0
    Read More
  • 12)- Georg Hinkel, Jörg Kunert, Jason Meredith. The Tecan SiLA2 SDK: A royalty-free, open-source framework to develop SiLA2 servers and clients. SLAS technology. 2023, 28 (5): 334-344
    Cited : 2
    Read More
  • 13)- Joao Paulo Pera Mendes, Ninghao Zhu, Pak Kin Wong. A sticky-end probe biosensor for homogeneous detection of transcription factor binding activity. SLAS technology. 2023, 28 (5): 345-350
    Cited : 0
    Read More
  • 14)- Ichiji Namatame, Kana Ishii, Takashi Shin, Daisuke Shimojo, Yukiko Yamagishi, Hidemitsu Asano, Yuuki Kishimoto, Hiromitsu Fuse, Yohei Nishi, Hidetoshi Sakurai, Tatsutoshi Nakahata, Haruna Sasaki-Iwaoka. Screening Station, a novel laboratory automation system for physiologically relevant cell-based assays. SLAS technology. 2023, 28 (5): 351-360
    Cited : 1
    Read More
  • 15)- Kristy A Terrell, Gregory D Sempowski, Andrew N Macintyre. Development and validation of an automated assay for anti-drug-antibodies in rat serum. SLAS technology. 2023, 28 (5): 361-368
    Cited : 0
    Read More
  • 16)- Denise A Warzak, Whitney A Pike, Kyle D Luttgeharm. Capillary electrophoresis methods for determining the IVT mRNA critical quality attributes of size and purity. SLAS technology. 2023, 28 (5): 369-374
    Cited : 1
    Read More
  • 17)- Brittney Pedrazzi, Aleksandr Treyer, Rachael Cohen, Amy Bowman, Jillian Acevedo-Skrip, Kristine Kearns, David Westover, John W Loughney. Greening automation: Wash and Re-use of disposable 384-well liquid handling tips to enable sustainable high-throughput vaccine development. SLAS technology. 2023, 28 (5): 375-379
    Cited : 1
    Read More
  • 18)- Tal Murthy, Jamien Lim. Life sciences discovery and technology highlights. SLAS technology. 2023, 28 (4): 211-213
    Cited : 0
    Read More
  • 19)- Jingru Xu, Edward Kai-Hua Chow. Biomedical applications of nanodiamonds: From drug-delivery to diagnostics. SLAS technology. 2023, 28 (4): 214-222
    Cited : 7
    Read More
  • 20)- Alysia Cox, Madelynn Tung, Hui Li, Kenneth R Hallows, Eun Ji Chung. In vitro delivery of mTOR inhibitors by kidney-targeted micelles for autosomal dominant polycystic kidney disease. SLAS technology. 2023, 28 (4): 223-229
    Cited : 4
    Read More
  • 21)- Finola E Cliffe, Conor Madden, Patrick Costello, Shane Devitt, Sumir Ramesh Mukkunda, Bhairavi Bengaluru Keshava, Howard O Fearnhead, Aiste Vitkauskaite, Mahshid H Dehkordi, Walter Chingwaru, Milosz Przyjalgowski, Natalia Rebrova, Mark Lyons. Mera: A scalable high throughput automated micro-physiological system. SLAS technology. 2023, 28 (4): 230-242
    Cited : 0
    Read More
  • 22)- Patrick A Kates, Jordan N Cook, Ryan Ghan, Huey J Nguyen, Pongkwan Sitasuwan, L Andrew Lee. Incorporation of automated buffer exchange empowers high-throughput protein and plasmid purification for downstream uses. SLAS technology. 2023, 28 (4): 243-250
    Cited : 1
    Read More
  • 23)- Nina Sara Fraticelli Guzmán, Mohamed W Badawy, Max A Stockslager, Michael L Farrell, Caitlin van Zyl, Seth Stewart, David L Hu, Craig R Forest. Quantitative assessment of automated purification and concentration of E. coli bacteria. SLAS technology. 2023, 28 (4): 251-257
    Cited : 0
    Read More
  • 24)- Ivana Fileš, Vincent Andersson. Automated sample preparation of protein solid dosage forms: Novel application for the tablet processing workstation. SLAS technology. 2023, 28 (4): 258-263
    Cited : 0
    Read More
  • 25)- Yuya Arai, Ko Takahashi, Takaaki Horinouchi, Koichi Takahashi, Haruka Ozaki. SAGAS: Simulated annealing and greedy algorithm scheduler for laboratory automation. SLAS technology. 2023, 28 (4): 264-277
    Cited : 0
    Read More
  • 26)- Toan V Phan, Yamin Oo, Teerapat Rodboon, Truc T Nguyen, Ladawan Sariya, Risa Chaisuparat, Waranyoo Phoolcharoen, Supansa Yodmuang, Joao N Ferreira. Plant molecular farming-derived epidermal growth factor revolutionizes hydrogels for improving glandular epithelial organoid biofabrication. SLAS technology. 2023, 28 (4): 278-291
    Cited : 0
    Read More
  • 27)- Roman Voronov, Murat Guvendiren. Bioprinting the future. SLAS technology. 2023, 28 (3): 101
    Cited : 0
    Read More
  • 28)- Allen Zennifer, Madhumithra Thangadurai, Dhakshinamoorthy Sundaramurthi, Swaminathan Sethuraman. Additive manufacturing of peripheral nerve conduits - Fabrication methods, design considerations and clinical challenges. SLAS technology. 2023, 28 (3): 102-126
    Cited : 10
    Read More
  • 29)- Atchara Chinnakorn, Wiwat Nuansing, Mahdi Bodaghi, Bernard Rolfe, Ali Zolfagharian. Recent progress of 4D printing in cancer therapeutics studies. SLAS technology. 2023, 28 (3): 127-141
    Cited : 15
    Read More
  • 30)- Kamil Elkhoury, Julio Zuazola, Sanjairaj Vijayavenkataraman. Bioprinting the future using light: A review on photocrosslinking reactions, photoreactive groups, and photoinitiators. SLAS technology. 2023, 28 (3): 142-151
    Cited : 8
    Read More
  • 31)- Joana Rita Oliveira Faria Marques, Patricia González-Alva, Ruby Yu-Tong Lin, Beatriz Ferreira Fernandes, Akhilanand Chaurasia, Nileshkumar Dubey. Advances in tissue engineering of cancer microenvironment-from three-dimensional culture to three-dimensional printing. SLAS technology. 2023, 28 (3): 152-164
    Cited : 2
    Read More
  • 32)- Raffaele Pugliese, Serena Graziosi. Biomimetic scaffolds using triply periodic minimal surface-based porous structures for biomedical applications. SLAS technology. 2023, 28 (3): 165-182
    Cited : 20
    Read More
  • 33)- Muthu Parkkavi Sekar, Harshavardhan Budharaju, Swaminathan Sethuraman, Dhakshinamoorthy Sundaramurthi. Carboxymethyl cellulose-agarose-gelatin: A thermoresponsive triad bioink composition to fabricate volumetric soft tissue constructs. SLAS technology. 2023, 28 (3): 183-198
    Cited : 7
    Read More
  • 34)- Toan V Phan, Yamin Oo, Khurshid Ahmed, Teerapat Rodboon, Vinicius Rosa, Supansa Yodmuang, Joao N Ferreira. Salivary gland regeneration: from salivary gland stem cells to three-dimensional bioprinting. SLAS technology. 2023, 28 (3): 199-209
    Cited : 3
    Read More
  • 35)- E Celeste Welch, Katherine Chaltas, Anubhav Tripathi. Ultrasound frequency sonication facilitates high-throughput and uniform dissociation of cellular aggregates and tissues. SLAS technology. 2023, 28 (2): 70-81
    Cited : 2
    Read More
  • 36)- Ádám Wolf, Stefan Romeder-Finger, Károly Széll, Péter Galambos. Towards robotic laboratory automation Plug & play: Survey and concept proposal on teaching-free robot integration with the lapp digital twin. SLAS technology. 2023, 28 (2): 82-88
    Cited : 1
    Read More
  • 37)- Krisztina Kiss, Soma Ránky, Zsuzsanna Gyulai, László Molnár. Development of a novel, automated, robotic system for rapid, high-throughput, parallel, solid-phase peptide synthesis. SLAS technology. 2023, 28 (2): 89-97
    Cited : 1
    Read More
  • 38)- Samantha Fasciano, Shue Wang. Recent advances of droplet-based microfluidics for engineering artificial cells. SLAS technology. 2023, :
    Cited : 3
    Read More
  • 39)- Yen-Yu Hsu, Sung-Won Hwang, Samuel J Chen, Eben Alsberg, Allen P Liu. Development of mechanosensitive synthetic cells for biomedical applications. SLAS technology. 2023, :
    Cited : 0
    Read More
  • 40)- Wentao Lin, Zhou-Yong Tan, Xi-Chi Fang. Identification of m6A-related lncRNAs-based signature for predicting the prognosis of patients with skin cutaneous melanoma. SLAS technology. 2023, :
    Cited : 1
    Read More
  • 41)- Antonia Katharina Hefermehl, Sanne Maria Mathias Hensen, Carina Versantvoort, Andrée Rothermel, Uğur Şahin. Automated glycan-bead coupling for high throughput, highly reproducible anti-glycan antibody analysis. SLAS technology. 2023, :
    Cited : 0
    Read More
  • 42)- Xinyu Liu, Jinying Cai, Wenjia Wang, Yujuan Chai. Multiplex digital microfluidics using serial controls and its applications in glucose sensing. SLAS technology. 2023, :
    Cited : 0
    Read More
  • 43)- Jenna Hall, Maciej Daniszewski, Shane Cheung, Kalyan Shobhana, Himeesh Kumar, Helena H Liang, Henry Beetham, Ellie Cho, Carla Abbott, Alex W Hewitt, Kaylene J Simpson, Robyn H Guymer, Daniel Paull, Alice Pébay, Grace E Lidgerwood. A semi-automated pipeline for quantifying drusen-like deposits in human induced pluripotent stem cell-derived retinal pigment epithelium cells. SLAS technology. 2023, :
    Cited : 0
    Read More
  • 44)- John A Bryant, Cameron Longmire, Sriya Sridhar, Samuel Janousek, Mason Kellinger, R Clay Wright. TidyTron: Reducing lab waste using validated wash-and-reuse protocols for common plasticware in Opentrons OT-2 lab robots. SLAS technology. 2023, :
    Cited : 0
    Read More
  • 45)- Thomas A Mackenzie, José R Tormo, Bastien Cautain, Germán Martínez, Isabel Sánchez, Olga Genilloud, Francisca Vicente, Maria C Ramos. Acoustic droplet ejection facilitates cell-based high-throughput screenings using natural products. SLAS technology. 2023, :
    Cited : 0
    Read More
  • 46)- Patarasuda Chaisupa, R Clay Wright. State-of-the-art in engineering small molecule biosensors and their applications in metabolic engineering. SLAS technology. 2023, :
    Cited : 0
    Read More
  • 47)- Mary Ashley Rimmer, Nathaniel R Twarog, Yong Li, Anang A Shelat, Zoran Rankovic, Lei Yang. A high-throughput quality control method for assessing the serial dilution performance of dose-response plates with acoustic ejection mass spectrometry. SLAS technology. 2023, :
    Cited : 0
    Read More
  • 48)- Jacob Schimetz, Pranav Shah, Charles Keese, Chris Dehnert, Michael Detweiler, Sam Michael, Catherine Toniatti-Yanulavich, Xin Xu, Elias C Padilha. Automated measurement of transepithelial electrical resistance (TEER) in 96-well transwells using ECIS TEER96: Single and multiple time point assessments. SLAS technology. 2023, :
    Cited : 0
    Read More
  • 49)- Jamien Lim, Tal Murthy. Life sciences discovery and technology highlights. SLAS technology. 2023, :
    Cited : 0
    Read More
  • 50)- Joaquín E Urrutia Gómez, Razan El Khaled El Faraj, Moritz Braun, Pavel A Levkin, Anna A Popova. ANDeS: An automated nanoliter droplet selection and collection device. SLAS technology. 2023, :
    Cited : 0
    Read More
 
 


Journal List
Links
Content Links
About Us

0